1,654 research outputs found

    Detección y evasión de obstáculos usando redes neuronales híbridas convolucionales y recurrentes

    Full text link
    [ES] Los términos "detección y evasión" hacen referencia al requerimiento esencial de un piloto para "ver y evitar" colisiones aire-aire. Para introducir UAVs en el día a día, esta funcion del piloto debe ser replicada por el UAV. En pequeños UAVs como pueden ser los destinados a la entrega de pedidos, existen ciertos aspectos limitantes en relación a tamaño, peso y potencia, por lo que sistemas cooperativos como TCAS o ADS-B no pueden ser utilizados y en su lugar otros sistemas como cámaras electro-ópticas son candidatos potenciales para obtener soluciones efectivas. En este tipo de aplicaciones, la solución debe evitar no solo otras aeronaves sino también otros obstáculos que puedan haber cerca de la superficie donde probablemente se operará la mayoría del tiempo. En este proyecto se han utilizado redes neuronales híbridas que incluyen redes neuronales convolucionales como primera etapa para clasificar objetos y redes neuronales recurrentes a continuación para deteminar la secuencia de eventos y actuar consecuentemente. Este tipo de red neuronal es muy actual y no se ha investigado en exceso hasta la fecha, por lo que el principal objetivo del proyecto es estudiar si podrían ser aplicadas en sistemas de "detección y evasión". Algoritmos de acceso libre han sido fusionados y mejorados para crear un nuevo modelo capaz de funcionar en este tipo de aplicaciones. A parte del algoritmo de detección y seguimiento, la parte correspondiente a la evasión de colisiones también fue desarrollada. Un filtro Kalman extendido se utilizó para estimar el rango relativo entre un obstáculo y el UAV. Para obtener una resolución sobre la posibilidad de conflicto, una aproximación estocástica fue considerada. Finalmente, una maniobra de evasión geométrica fue diseñada para utilizar si fuera necesario. Esta segunda parte fue evaluada mediante una simulación que también fue creada para el proyecto. Adicionalmente, un ensayo experimental se llevó a cabo para integrar las dos partes del algoritmo. Datos del ruido de la medida fueron experimentalmente obtenidos y se comprobó que las colisiones se podían evitar satisfactoriamente con dicho valor. Las principales conclusiones fueron que este nuevo tipo funciona más rápido que los métodos basados en redes neuronales más comunes, por lo que se recomiendo seguir investigando en ellas. Con la técnica diseñada, se encuentran disponibles multiples parámetros de diseño que pueden ser adaptados a diferentes circumstancias y factores. Las limitaciones principales encontradas se centran en la detección de obstáculos y en la estimación del rango relativo, por lo que se sugiere que la futura investigación se dirija en estas direcciones.[EN] A Sense and Avoid technique has been developed in this master thesis. A special method for small UAVs which use only an electro-optical camera as the sensor has been considered. This method is based on a sophisticated processing solution using hybrid Convolutional and Recurrent Neural Networks. The aim is to study the feasibility of this kind of neural networks in Sense and Avoid applications. First, the detection and tracking part of the algorithm is presented. Two models were used for this purpose: a Convolutional Neural Network called YOLO and a hybrid Convolutional and Recurrent Neural Network called Re3. After that, the collision avoidance part was designed. This consisted of the obstacle relative range estimation using an Extended Kalman Filter, the conflict probability calculation using an analytical approach and the geometric avoidance manoeuvre generation. Both parts were assessed separately by videos and simulations respectively, and then an experimental test was carried out to integrate them. Measurement noise was experimentally tested and simulations were performed again to check that collisions were avoided with the considered detection and tracking approach. Results showed that the considered approach can track objects faster than the most common computer vision methods based on neural networks. Furthermore, the conflict was successfully avoided with the proposed technique. Design parameters were allowed to adjust speed and maneuvers accordingly to the expected environment or the required level of safety. The main conclusion was that this kind of neural network could be successfully applied to Sense and Avoid systems.Vidal Navarro, D. (2018). Sense and avoid using hybrid convolutional and recurrent neural networks. Universitat Politècnica de València. http://hdl.handle.net/10251/142606TFG

    Sense and avoid using hybrid convolutional and recurrent neural networks

    Get PDF
    This work develops a Sense and Avoid strategy based on a deep learning approach to be used by UAVs using only one electro-optical camera to sense the environment. Hybrid Convolutional and Recurrent Neural Networks (CRNN) are used for object detection, classification and tracking whereas an Extended Kalman Filter (EKF) is considered for relative range estimation. Probabilistic conflict detection and geometric avoidance trajectory are considered for the last stage of this technique. The results show that the considered deep learning approach can work faster than other state-of-the-art computer vision methods. They also show that the collision can be successfully avoided considering design parameters that can be adjusted to adapt to different scenarios

    Silk-reinforced collagen hydrogels with raised multiscale stiffness for mesenchymal cells 3D culture

    Get PDF
    Type I collagen hydrogels are of high interest in tissue engineering. With the evolution of 3D bioprinting technologies, a high number of collagen-based scaffolds have been reported for the development of 3D cell cultures. A recent proposal was to mix collagen with silk fibroin derived from Bombyx mori silkworm. Nevertheless, due to the difficulties in the preparation and the characteristics of the protein, several problems such as phase separation and collagen denaturation appear during the procedure. Therefore, the common solution is to diminish the concentration of collagen although in that way the most biologically relevant component is reduced. In this study, we present a new, simple, and effective method to develop a collagen-silk hybrid hydrogel with high collagen concentration and with increased stiffness approaching that of natural tissues, which could be of high interest for the development of cardiac patches for myocardial regeneration and for preconditioning of mesenchymal stem cells (MSCs) to improve their therapeutic potential. Sericin in the silk was preserved by using a physical solubilizing procedure that results in a preserved fibrous structure of type I collagen, as shown by ultrastructural imaging. The macro- and micromechanical properties of the hybrid hydrogels measured by tensile stretch and atomic force microscopy, respectively, showed a more than twofold stiffening than the collagen-only hydrogels. Rheological measurements showed improved printability properties for the developed biomaterial. The suitability of the hydrogels for 3D cell culture was assessed by 3D bioprinting bone marrow-derived MSCs cultured within the scaffolds. The result was a biomaterial with improved printability characteristics that better resembled the mechanical properties of natural soft tissues while preserving biocompatibility owing to the high concentration of collagen. Impact statement In this study, we report the development of silk microfiber-reinforced type I collagen hydrogels for 3D bioprinting and cell culture. In contrast with previously reported studies, a novel physical method allowed the preservation of the silk sericin protein. Hydrogels were stable, showed no phase separation between the biomaterials, and they presented improved printability. An increase between two- and threefold of the multiscale stiffness of the scaffolds was achieved with no need of using additional crosslinkers or complex methods, which could be of high relevance for cardiac patches development and for preconditioning mesenchymal stem cells (MSCs) for therapeutic applications. We demonstrate that bone marrow-derived MSCs can be effectively bioprinted and 3D cultured within the stiffened structures.This work was supported in part by the Spanish Ministry of Sciences, Innovation and Universities (DPI2017-83721-P and PGC2018-097323-A-I00) and by the Marie Sklodowska- Curie Action, Innovative Training Networks 2018, EU Grant Agreement no. 812772.Peer ReviewedPostprint (published version

    The AXIOM software layers

    Get PDF
    AXIOM project aims at developing a heterogeneous computing board (SMP-FPGA).The Software Layers developed at the AXIOM project are explained.OmpSs provides an easy way to execute heterogeneous codes in multiple cores. People and objects will soon share the same digital network for information exchange in a world named as the age of the cyber-physical systems. The general expectation is that people and systems will interact in real-time. This poses pressure onto systems design to support increasing demands on computational power, while keeping a low power envelop. Additionally, modular scaling and easy programmability are also important to ensure these systems to become widespread. The whole set of expectations impose scientific and technological challenges that need to be properly addressed.The AXIOM project (Agile, eXtensible, fast I/O Module) will research new hardware/software architectures for cyber-physical systems to meet such expectations. The technical approach aims at solving fundamental problems to enable easy programmability of heterogeneous multi-core multi-board systems. AXIOM proposes the use of the task-based OmpSs programming model, leveraging low-level communication interfaces provided by the hardware. Modular scalability will be possible thanks to a fast interconnect embedded into each module. To this aim, an innovative ARM and FPGA-based board will be designed, with enhanced capabilities for interfacing with the physical world. Its effectiveness will be demonstrated with key scenarios such as Smart Video-Surveillance and Smart Living/Home (domotics).Peer ReviewedPostprint (author's final draft

    Head-to-head comparison of two engineered cardiac grafts for myocardial repair: From scaffold characterization to pre-clinical testing

    Get PDF
    Cardiac tissue engineering, which combines cells and supportive scaffolds, is an emerging treatment for restoring cardiac function after myocardial infarction (MI), although, the optimal construct remains a challenge. We developed two engineered cardiac grafts, based on decellularized scaffolds from myocardial and pericardial tissues and repopulated them with adipose tissue mesenchymal stem cells (ATMSCs). The structure, macromechanical and micromechanical scaffold properties were preserved upon the decellularization and recellularization processes, except for recellularized myocardium micromechanics that was ∼2-fold stiffer than native tissue and decellularized scaffolds. Proteome characterization of the two acellular matrices showed enrichment of matrisome proteins and major cardiac extracellular matrix components, considerably higher for the recellularized pericardium. Moreover, the pericardial scaffold demonstrated better cell penetrance and retention, as well as a bigger pore size. Both engineered cardiac grafts were further evaluated in pre-clinical MI swine models. Forty days after graft implantation, swine treated with the engineered cardiac grafts showed significant ventricular function recovery. Irrespective of the scaffold origin or cell recolonization, all scaffolds integrated with the underlying myocardium and showed signs of neovascularization and nerve sprouting. Collectively, engineered cardiac grafts -with pericardial or myocardial scaffolds- were effective in restoring cardiac function post-MI, and pericardial scaffolds showed better structural integrity and recolonization capability

    Implementation of a mindfulness-based crisis intervention for frontline healthcare workers during the COVID-19 outbreak in a public general hospital in Madrid, Spain

    Full text link
    Introduction: The COVID-19 outbreak is having an impact on the well-being of healthcare workers. Mindfulness-based interventions have shown effectiveness in reducing stress and fostering resilience and recovery in healthcare workers. There are no studies examining the feasibility of brief mindfulness-based interventions during the COVID-19 outbreak. Materials and Methods: This is an exploratory study with a post intervention assessment. We describe an on-site brief mindfulness intervention and evaluate its helpfulness, safety, and feasibility. Results: One thousand out of 7,000 (14%) healthcare workers from La Paz University Hospital in Madrid (Spain) participated in at least one session. One hundred and fifty out of 1,000 (15%) participants filled out a self-report questionnaire evaluating the helpfulness of the intervention for on-site stress reduction. Ninety two subjects (61%) participated in more than one session. Most of the participants were women (80%) with a mean age of 38.6 years. Almost half of the sample were nurses (46%). Sessions were perceived as being helpful with a mean rating of 8.4 on a scale from 0 to 10. Only 3 people (2%) reported a minor adverse effect (increased anxiety or dizziness). Discussion: Our data supports the utility, safety and feasibility of an on-site, brief mindfulness-based intervention designed to reduce stress for frontline health workers during a crisis. There is a need to continue testing this type of interventions, and to integrate emotion regulation strategies as an essential part of health workers' general training. Clinical Trial Registration number: NCT04555005

    Depopulation impacts on ecosystem services in Mediterranean rural areas

    Get PDF
    Despite the exponential increase in human population at global scale, some rural areas have experienced a progressive abandonment over the last decades. Under particular socioecological and policy contexts, changes in demography may promote land-use changes and, consequently, alter ecosystem services (ES) supply. However, most studies on this topic have targeted urban population increase, whereas depopulation has been rarely addressed. Here, we examined how shifts in demographic variables (human population, population density, and number of villages) affect provisioning (water supply, food and biomass production) and regulating (soil retention, water and nutrient regulation) ES in Mediterranean rural areas with contrasting environmental, so-cioeconomic and land-use contexts. When depopulation results in underuse of socio-ecological systems, we ex-pected a decrease of provisioning and an increase of regulating ES, whereas we expected the opposite pattern when it results in land-use intensification. To test this hypothesis, we compared demographic data and ES estimated with Soil and Water Assessment Tool (SWAT) linked to land-use changes between the 1950s and 2000s in three rural areas of Arag ́on (NE Spain). Generalized Additive Mixed Models and Linear Mixed-Effect Models were used to analyze demographic trends, ES changes and the relationship between them. We found severe depopulation (− 42% inhabitants) and associated land-use changes in the three areas, which was particularly evident in isolated mountainous zones (− 63% inhabitants). Depopulation trends significantly affected land use and, consequently, all of the ES evaluated. In mountainous depopulated areas, land abandonment and rewilding resulted in the increase in water regulation (>1000%) and soil retention (>400%). In contrast, agriculture was intensified in more fertile and easy-to-access lowland areas, boosting the food production service (>600%). Accordingly, the interactions among depopulation, crop production and regulating ES should be considered in the management schemes and policies targeting rural areas for a balanced and sustainable supply of ES in the long term

    In-depth analysis of T cell immunity and antibody responses in heterologous prime-boost-boost vaccine regimens against SARS-CoV-2 and Omicron variant.

    Get PDF
    With the emergence of novel Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) Variants of Concern (VOCs), vaccination studies that elucidate the efficiency and effectiveness of a vaccination campaign are critical to assess the durability and the protective immunity provided by vaccines. SARS-CoV-2 vaccines have been found to induce robust humoral and cell-mediated immunity in individuals vaccinated with homologous vaccination regimens. Recent studies also suggest improved immune response against SARS-CoV-2 when heterologous vaccination strategies are employed. Yet, few data exist on the extent to which heterologous prime-boost-boost vaccinations with two different vaccine platforms have an impact on the T cell-mediated immune responses with a special emphasis on the currently dominantly circulating Omicron strain. In this study, we collected serum and peripheral blood mononuclear cells (PBMCs) from 57 study participants of median 35-year old's working in the health care field, who have received different vaccination regimens. Neutralization assays revealed robust but decreased neutralization of Omicron VOC, including BA.1 and BA.4/5, compared to WT SARS-CoV-2 in all vaccine groups and increased WT SARS-CoV-2 binding and neutralizing antibodies titers in homologous mRNA prime-boost-boost study participants. By investigating cytokine production, we found that homologous and heterologous prime-boost-boost-vaccination induces a robust cytokine response of CD4+ and CD8+ T cells. Collectively, our results indicate robust humoral and T cell mediated immunity against Omicron in homologous and heterologous prime-boost-boost vaccinated study participants, which might serve as a guide for policy decisions

    A view of the Brazil-Malvinas confluence, March 2015

    Get PDF
    The encountering of the subtropical Brazil Current (BC) and the subantarctic Malvinas Current (MC) along the western margin of the Argentine Basin forms the Brazil-Malvinas Confluence (BMC), one of the most intense open-ocean fronts in the world ocean and a site for the formation of intermediate water masses. Here, we provide a comprehensive description of the BMC based on physical and biogeochemical data – hydrographic stations, profiling floats and subsurface drifters – gathered in March 2015. We use these data in order to characterize the impinging and outflowing currents and to describe the cross- and along-frontal thermohaline structure. In addition, we compare the in-situ measurements with both climatological data and the Mercator Ocean eddy-resolving reanalysis. The hydrographic sections illustrate the contrasting properties between the two western boundary currents: warm, salty, nutrient- and oxygen-poor oligotrophic subtropical waters carried southward by the BC and the cold, fresh, oxygen- and nutrient-rich subantarctic waters carried northward by the MC. The frontal system is also characterized by the presence of thermohaline intrusions, with the cross-frontal gradients and along-front velocities sharpening as the colliding currents shape the frontal system. We also observe brackish waters spreading on top of the frontal jet as a result of both the confluence dynamics and off-shelf advection favored by north-easterly winds. These low-salinity waters are positively correlated with surface ageostrophic speeds over the frontal jet. The cruise data illustrates the high regional and mesoscale variability as compared with climatological conditions, and further document the submesoscale subsurface complexity, which is not properly captured by available operational models.Fil: Orúe Echevarría, Dorleta. Consejo Superior de Investigaciones Científicas. Instituto de Ciencias del Mar; EspañaFil: Pelegrí, Josep L.. Consejo Superior de Investigaciones Científicas. Instituto de Ciencias del Mar; EspañaFil: Alonso González, Iván J.. Oceomic, Marine Bio And Technology S.L; EspañaFil: Benítez Barrios, Verónica M.. Oceomic, Marine Bio And Technology S.L; EspañaFil: Emelianov, Mikhail. Consejo Superior de Investigaciones Científicas. Instituto de Ciencias del Mar; EspañaFil: García Olivares, Antonio. Consejo Superior de Investigaciones Científicas. Instituto de Ciencias del Mar; EspañaFil: Gasser i Rubinat, Marc. Consejo Superior de Investigaciones Científicas. Instituto de Ciencias del Mar; EspañaFil: De La Fuente, Patricia. Consejo Superior de Investigaciones Científicas. Instituto de Ciencias del Mar; EspañaFil: Herrero, Carmen. Consejo Superior de Investigaciones Científicas. Instituto de Ciencias del Mar; EspañaFil: Isern Fontanet, Jordi. Consejo Superior de Investigaciones Científicas. Instituto de Ciencias del Mar; EspañaFil: Masdeu Navarro, Marta. Consejo Superior de Investigaciones Científicas. Instituto de Ciencias del Mar; EspañaFil: Peña Izquierdo, Jesús. Consejo Superior de Investigaciones Científicas. Instituto de Ciencias del Mar; EspañaFil: Piola, Alberto Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; ArgentinaFil: Ramírez Garrido, Sergio. Consejo Superior de Investigaciones Científicas. Instituto de Ciencias del Mar; EspañaFil: Rosell Fieschi, Miquel. Consejo Superior de Investigaciones Científicas. Instituto de Ciencias del Mar; EspañaFil: Salvador, Joaquín. Consejo Superior de Investigaciones Científicas. Instituto de Ciencias del Mar; EspañaFil: Saraceno, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Universidad de Barcelona; EspañaFil: Valla, Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; ArgentinaFil: Vallès Casanova, Ignasi. Consejo Superior de Investigaciones Científicas. Instituto de Ciencias del Mar; EspañaFil: Vidal, Montserrat. Universidad de Barcelona; Españ

    A correlative biomarker study and integrative prognostic model in chemotherapy-naïve metastatic castration-resistant prostate cancer treated with enzalutamide

    Get PDF
    There is a considerable need to incorporate biomarkers of resistance to new antiandrogen agents in the management of castration-resistant prostate cancer (CRPC). We conducted a phase II trial of enzalutamide in first-line chemo-naïve asymptomatic or minimally symptomatic mCRPC and analyzed the prognostic value of TMPRSS2-ERG and other biomarkers, including circulating tumor cells (CTCs), androgen receptor splice variant (AR-V7) in CTCs and plasma Androgen Receptor copy number gain (AR-gain). These biomarkers were correlated with treatment response and survival outcomes and developed a clinical-molecular prognostic model using penalized cox-proportional hazard model. This model was validated in an independent cohort. Ninety-eight patients were included. TMPRSS2-ERG fusion gene was detected in 32 patients with no differences observed in efficacy outcomes. CTC detection was associated with worse outcome and AR-V7 in CTCs was associated with increased rate of progression as best response. Plasma AR gain was strongly associated with an adverse outcome, with worse median prostate specific antigen (PSA)-PFS (4.2 vs. 14.7 m; p < 0.0001), rad-PFS (4.5 vs. 27.6 m; p < 0.0001), and OS (12.7 vs. 38.1 m; p < 0.0001). The clinical prognostic model developed in PREVAIL was validated (C-Index 0.70) and the addition of plasma AR (C-Index 0.79; p < 0.001) increased its prognostic ability. We generated a parsimonious model including alkaline phosphatase (ALP); PSA and AR gain (C-index 0.78) that was validated in an independent cohort. TMPRSS2-ERG detection did not correlate with differential activity of enzalutamide in first-line mCRPC. However, we observed that CTCs and plasma AR gain were the most relevant biomarkers
    corecore